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We present a simulation of the growth of a two-dimensional biological cellular system in which the
cells experience mitosis whenever the (area)/(perimeter) ratio reaches a critical value. The model
also includes the effect of interfacial energy and temperature. A stationary state with a constant
average area is attained. We calculate the distribution of cells as a function of area, perimeter, and
number of sides and also the two-cell correlation function. The results depend on temperature and
are in agreement with experimental data, simulations, and theoretical models.

PACS number(s): 87.10.4e, 82.70.Rr

I. INTRODUCTION

Two-dimensional cellular systems like soap froths,
sections of polycrystalline grains, or biological tissues
present similar features in spite of originating through
totally different phenomena [1]. This common behavior
can be explained by noting that all these systems are sub-
ject to the same geometric and topological constraints:
topology requires that every flat two-dimensional, space-
filling cellular structure has cells with an average of six
sides and geometry imposes a relation between area and
perimeter that is maximal for a regular polygon. Also,
from a physical point of view, the main contribution to
the energy comes from the interfaces between the cells.

The dynamics of soap froths and metallurgical grains
are relatively well understood. The equilibrium distribu-
tion functions can be calculated, for instance, through
the maximum-entropy formalism [2-4]. Nearly two-
dimensional biological tissues exhibit a distribution of
cells that is similar to foams and metallurgical aggregates
[1,5] in spite of being generated by a different dynamics:
biological cells may suffer mitosis, the process in which
cells mature and split in two.

As was pointed out by Lewis [6] the surface tensions of
the cells play an essential role in determining the over-
all pattern both of biological tissues and soap froths [7].
However, the long-time state of a biological tissue dif-
fers from foams in an important detail: the average area
of the cells is constant in time. Unlike other systems,
biological cells may suffer mitosis. While there has been
some theoretical modeling of cellular growth in biological
systems, another possible approach to study this prob-
lem is to perform a simulation that takes into account
the main features of cellular growth. These simulations
can then be compared with the results of experiments [5,
6] and theoretical predictions for two-dimensional cellu-
lar systems. The aim of this paper is to present such a
numerical simulation of the growth of a two-dimensional
cellular system on the same basis as recent simulations for
cell sorting [8, 9], soap froths, and grain growth [10-13],
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but including cell mitosis. The results are then compared
with experiments performed by two of us [5]. They are
in good agreement with the experimental data and also
with such general principles as the Aboav-Weaire law [1,
14, 15].

II. SIMULATION PROCEDURE

The simulation is performed on a square lattice where a
positive integer label is assigned to each site: a connected
set of equally labeled sites represents a cell. The entire
lattice contains 1100 x 1100 sites. Sites labeled with O are
empty sites. Cells can grow either by invading O sites, in
which case we assume that there is no interfacial energy,
or by invading neighboring cells’ sites, thus modifying
the interfacial energy which we take to be proportional
to the length of the contact region.

The simulation begins with an initial cell (labeled 1)
of 10 x 10 sites at the center of the lattice. As mentioned
above, there is no interfacial energy between the cell and
the vacuum (0 sites) and two sites with different indices
contribute with a fixed value § to the energy if they are
nearest neighbors. The cells grow as follows: (i) Choose
at random a site and one of its neighbors. (ii) If both
sites belong to the same cell, return to (i). (iii) The
probability that a site is invaded, that is, the probability
of changing the site label to the label of the neighbor is
given by

ap - (PR EAEZ

where (3 is associated with the “thermal” noise and AFE
is the energy difference between final and initial states.
This is not the only mechanism to modify the tissue.
The cells also suffer mitosis when they attain a criti-
cal value of the (area)/(perimeter) ratio [16]. Here area
is measured by the number of equally labeled sites and
perimeter by the number of lattice edges that separate
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two cells. Mitosis results from a competition between
surface and bulk-energy terms similar to the origin of
finite domains in ferromagnetic materials. In biological
tissues the competition arises from the capacity of the cel-
lular membrane to absorb nutrients (proportional to the
perimeter) versus the required amount of these nutrients
to keep the cell alive, which is proportional to the volume
of the cell (proportional to the area, in two-dimensional
tissues). The mitosis process is then responsible for a
constant average area of the cell that is related to an
optimal (area)/(perimeter) ratio, which may be different
for different biological systems. Consequently, choosing
the critical value of the ratio that determines the onset of
mitosis is equivalent to defining the average area of the
cells.

In the simulation the mitosis is performed as follows:
periodically in the program a mitosis routine is run: the
center of mass, area a, and perimeter p of each cell are
measured and whenever the ratio a/p exceeds a given
mitosis parameter k (here k = 3), the cell suffers mito-
sis, i.e., it is divided into two different cells by an edge
crossing the center of mass in the direction of the least
diameter, as occurs in real tissues [16]. Also, during the
growth process a cell may split into two or more pieces.
Then from time to time a routine is run to locate all dis-
connected pieces of a given cell and attribute different
labels. This procedure guarantees that cells are simply
connected at all temperatures.

Finally, we have performed the simulation for different
values of the temperature T' = 1/3 from 0 to 0.9 and the
results are presented in the following section.

III. RESULTS

The simulation is performed on a lattice of 1100 x 1100
sites, but we monitored the evolution of a region with
300 x 300 sites at the center of the lattice, to avoid sur-
face effects. The simulation ends when the growing tissue
touches the far edges of the lattice. We chose a critical
value of 3 for the (area)/(perimeter) ratio to ensure that
in the stationary regime there are enough sites per cell
and enough cells in the monitored region of the tissue to
guarantee statistically significant results. In Fig. 1 we
show six snapshots of a region of 100 x 100 sites of the
central tissue, grown at different temperatures. At T =0
the process is fully deterministic and the tissue presents
irregular cells: although most of the sides are straight
in either the horizontal or vertical directions, in order
to minimize the wall energy, as it is to be expected on
a square lattice with first-neighbors interactions. This
effect is more evident for T = 0.1 and 0.2: it is a “pin-
ning” effect [17], also present in previous simulations [11,
13], originating from the anisotropy of the square lattice.
Thermal energy overcomes pinning effects for T > 0.3
and for T" = 0.6 and 0.9 the tissue is disordered and with
more “rounded” cells. We have chosen the tissue grown
at T' = 0.6 to investigate the statistical properties of the
system. For all temperatures we averaged over 5 runs
except for T' = 0.6, where we considered 10 simulated
tissues.

First of all we must be sure that the system has at-

FIG. 1.
tures.

Snapshots of tissues grown at different tempera-

tained an equilibrium configuration. In Fig. 2(a) we have
plotted the mean area of the cells as a function of the
number of Monte Carlo simulation steps per site, MCS.
It is evident that after 400 MCS the tissue attains a con-
stant average area, as expected in biological tissues. This
constant area is ensured by mitosis; in other cellular sys-
tems, like soap froths and metallurgical aggregates where
mitosis is not possible, the average area increases as a
power law in time, although the structure remains self-
similar [1,18,19]. In Fig. 2(b) we plot the second moment
of the distribution of number of sides, ps, a parameter
that is widely used as a measure of the disorder of the
lattice; in both figures it is evident that the tissue at-
tains an equilibrium regime after about 500 MCS, with
uo =~ 1.7.

A. Disorder of the tissue

In Fig. 3 we plot the probability of finding a cell with

n sides for tissues grown at T' = 0.6 for three different
times. The mean value is roughly 6, as expected, and the
dispersion po = 1.71, while real biological systems exhibit
u2 = 1. They are more regular than both the present
simulation as well as two-dimensional soap froths, if one
compares with the experimental results of Glazier, An-
derson, and Grest [10]. The value of y, depends on the
temperature of our simulations. As shown in Fig. 4(a)
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FIG. 2. (a) Average area as a function of time. (b) Tem-
poral evolution of the disorder parameter uz = {(n — 6)?).
Here MCS stands for Monte Carlo step per site.



600 MOMBACH, de ALMEIDA, AND IGLESIAS 48
0.4 T :
{’%\’ A

0.3 27 1
> .
g 2 -
Q i g A
5 0.2 1 S
o =
[ S A
= L1t 1

0.1 = BBSgagn‘

E;S QO [o] 8
590 a,
~ g8l 388 o
b o a 6q88° Sogo
0.0 = — 88c® & Hog
2 4 6 8 .. 10 ge® s . Soafg.
n 0 A A | A L a0m ﬁgﬂm‘
0 1 2

FIG. 3. Plot of the distribution of sides for ¢t = 500, t =
600, and ¢t = 700 MCS, all in the stationary state.

po is very large (and with a large error bar) for T = 0,
where the tissue is frozen in a metastable state, decreases
to very low values for T' = 0.1 and 0.3 due to the pinning
effect, and slowly increases with T after that. This be-
havior is also clear from the plot of the mean area (a) as
a function of T, but a different derivative is obtained for
T > 0.6, Fig. 4(b). As the pinning “freezes” the tissue
at low temperatures, one must perform the simulation at
relatively high temperatures (T =~ 0.6) and so the simu-
lated tissue is more disordered than real biological ones.
We expect that a simulation performed on lattices where
the energy anisotropy is lower and pinning effects not
relevant [13] should improve these results and enable a
better quantitative comparison with experiments.

To determine the size of the cells we plot the distribu-
tion of area of the cells (normalized to the mean value
(a)), as shown in Fig. 5 for three different times, at
T = 0.6. Note that all simulation points lie in the same
region while the experimental data [6] (full triangles) ex-
hibit a lower dispersion, as occurs for the distribution in
the number of sides. We have also performed simulations
on different samples and the results are the same.

B. Lewis’s law

One interesting point is the relation between the mean
area of n-sided cells (a,) as a function of the number
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FIG. 4. Temperature dependence of (a) 2 and (b) the

average area of the cells (a).

FIG. 5. Area distribution for three different instants of
time in the stationary state (open symbols) compared with
Lewis’s experimental results for cucumber (full triangles) [6].
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FIG.6. (a) Average area and (b) perimeter of n-sided cells
(an) for A. attenuata (open circles) [5] and our simulation
results (full circles).
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FIG. 7. (a) Average side length of the n-sided cells for
A. attenuata (open circles) [5] and simulation results (full
circles). (b) Verification of the Aboav-Weaire’s law for the
simulated tissues. The slope of the line is 4.8.
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FIG. 8. Area distribution for (a) the Potts model (open
squares) [10], cucumber (open triangles) [6], and (b) our sim-
ulation results (full circles).

of sides n. Lewis [16] found that the relation between
(an) and n is approximately linear, i.e., (a,) =~ A+ Bn.
Some maximum entropy theoretical results also predict
a linear relationship [2], others give a different exponent
({arn) =~ n?) [4], and the random-neighbor model obtains
the linear relationship as an asymptotic law [20]. Unfor-
tunately experimental results are not conclusive [5]. In
Fig. 6(a) we have plotted the results of our simulation
together with experimental results for A. attenuata [5]
and both seem to indicate a linear dependence on n up
to n = 9, the maximum number of sides obtained in the
simulation. In Fig. 6(b) we have plotted the results of the
simulation and experimental data for the mean perimeter
and in Fig. 7(a) the average side length of n-sided cells.
Although it is not trivial to determine the functional re-
lationship, both results are in very good agreement with
the experiments.

C. Aboav-Weaire’s law

The relation between the number of sides of a cell and
the mean number of sides of its neighbors m(n) deserves
special attention. An empirical universality appears in
experiments and numerical simulations [1, 5, 10, 21, 22].
It has been observed that

nm(n) = (6 — a)n + (6a + p2), )

where a is always close to 1, yielding a slope near 5 in the
plot nm(n) vs n. A detailed discussion of the probable
origins of the Aboav-Weaire’s law as well as its verifica-
tion in many different cases was presented elsewhere [23].
Here we restrict ourselves to a plot of nm(n) vs n, Fig.
7(b), where we show that our simulation also verifies Eq.
(2). This is in agreement with experimental results for
soap froths [15], vegetable tissues [5], and with earlier
simulations [10, 21].
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FIG. 9. Average area (an) (a) and perimeter (pn) (b) of
the n-sided cells for the Potts model (open squares) [10], A.
arborescens (diamonds) [5], c¢f. Anthurium (full triangles)
(5], and our simulation results (full circles).

IV. DISCUSSION AND CONCLUSIONS

The main difference between biological tissues and
other cellular systems is the ability of biological cells to
split themselves: mitosis. This guarantees a long-time
stable state and a constant average area (volume, in three
dimensions). We have shown that a simple simulation in-
cluding mitosis can reproduce important features [5] of
two-dimensional biological tissues. In order to compare
with other simulations without mitosis we have plotted
in Fig. 8 the area distributions obtained in a Potts-model
simulation [10] and in the experiments by Lewis [6], to-
gether with our results. It is evident that simulations
without mitosis yield a distribution with a maximum for
zero-area cells, while we found a maximum for finite area,
although with a larger dispersion (due to the anisotropy
[13]) than Lewis’s experimental results. Finally the plot
of the average area of n-sided cells {(a,) and the average
perimeter (p,) displays a very good agreement between
the present simulation and experimental data. For com-
parison we also plotted in Figs. 9(a) and 9(b) the Potts
model simulation data for the average area and radius of
n-sided cells, respectively: the results diverge for n > 6.

These results suggest that mitosis is the dynamical
process that accounts for the differences between metal-
lurgical aggregates or soap froth and biological cells [5].
Simulations on a triangular lattice, where pinning effects
are not relevant, are now in progress and should improve
further quantitative agreement with experiments.

ACKNOWLEDGMENTS

We acknowledge fruitful discussions with M. A.
Gusmao, P. M. Mors, N. Lemke, and J. J. Arenzon. This
work has been partially supported by Brazilian agencies
CNPq (Conselho Nacional de Desenvolvimento Cientifico
e Tecnolégico), FINEP (Financiadora de Estudos e Pro-
jetos), and FAPERGS (Fundagdo de Amparo & Pesquisa
do Estado do Rio Grande do Sul).



602 MOMBACH, de ALMEIDA, AND IGLESIAS 48

[1] D. Weaire and N. Rivier, Contemp. Phys. 25, 49 (1984).
[2] N. Rivier, Philos. Mag. B 52, 795 (1985).
[3] M.A. Peshkin, K.J. Strandburg, and N. Rivier, Phys.
Rev. Lett. 67, 1803 (1991).
[4] J.R. Iglesias and R.M.C. de Almeida, Phys. Rev. A 43,
2763 (1991).
(5] J.C.M. Mombach, M.A.Z. Vasconcellos, and R.M.C. de
Almeida, J. Phys. D 23, 600 (1990).
[6] F.T. Lewis, Anat. Rec. 50, 235 (1931).
[7] Sir D. Thompson, On Growth and Form, 2nd ed. (Cam-
bridge University Press, Cambridge, 1942).
[8] F. Graner and J.A. Glazier, Phys. Rev. Lett. 69, 2013
(1992).
[9] J.A. Glazier and F. Graner, Phys. Rev. E 47, 2128
(1993).
[10] J.A. Glazier, M.P. Anderson, and G.S. Grest, Philos.
Mag. B 62, 615 (1990).
[11] M.P. Anderson, D.J. Srolovitz, G.S. Grest, and P.S.

Sahni, Acta Metall. 32, 783 (1984).

[12] D.J. Srolovitz, M.P. Anderson, P.S. Sahni, and G.S.
Grest, Acta Metall. 32, 793 (1984).

[13] E.A. Holm, J.A. Glazier, D.J. Srolovitz, and G. S. Grest,
Phys. Rev. A 43, 2662 (1991).

[14] D.A. Aboav, Metallography 13, 43 (1980).

[15) D.A. Aboav, Metallography 16, 265 (1983).

[16] F.T. Lewis, Anat. Rec. 38, 341 (1928).

[17] J. Vihals and M. Grant, Phys. Rev. B 36, 7036 (1987).

[18] J. Stavans and J.A. Glazier, Phys. Rev. Lett. 62, 1318
(1989).

[19] J.A. Glazier and D. Weaire, J. Phys. C 4, 1867 (1992).

[20] H. Flyvbjerg, Phys. Rev. E 47, 4037 (1993).

[21] D. Weaire and J.P. Kermode, Philos. Mag. B 48, 245
(1983).

[22] G. Le Cagér, J. Phys. A 24, 1307 (1991).

[23] J.C.M. Mombach, R.M.C. de Almeida, and J. R. Iglesias,
Phys. Rev. E 47, 3712 (1993).



